Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-37725271

RESUMO

Targeted therapy, such as tyrosine kinase inhibitors (TKIs), has been approved to manage various cancer types. However, TKI-induced cardiotoxicity is a limiting factor for their use. This issue has raised the need for investigating potential cardioprotective techniques to be combined with TKIs. Ribosomal S6-kinases (RSKs) are a downstream effector of the mitogen-activated-protein-kinase (MAPK) pathway; specific RSK isoforms, such as RSK1 and RSK2, have been expressed in cancer cells, in which they increase tumour proliferation. Selective targeting of those isoforms would result in tumour suppression. Moreover, activation of RSKs expressed in the heart has resulted in cardiac hypertrophy and arrhythmia; thus, inhibiting RSKs would result in cardio-protection. This review article presents an overview of the usefulness of RSK inhibitors that can be novel agents to be assessed in future research for their effect in reducing cancer proliferation, as well as protecting the heart from cardiotoxicity induced by TKIs.

2.
Life Sci ; 209: 197-201, 2018 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-30089233

RESUMO

Cardiac remodeling, characterized by excessive extracellular matrix (ECM) remodeling, predisposes the heart to failure if left unresolved. Understanding the signaling mechanisms involved in excessive extracellular matrix (ECM) remodeling is necessary to identify the means to regress the development of cardiac remodeling and heart failure. Recently, hyaluronan (HA), a ubiquitously expressed glycosaminoglycan in the ECM, was shown to participate in tissue fibrosis and myofibroblast proliferation through interacting with its ubiquitously expressed cell-surface receptor, CD44. CD44 is a multifunctional transmembrane glycoprotein that serves as a cell-surface receptor for a number of ECM proteins. The mechanism by which the interaction between CD44-HA contributes to ECM and cardiac remodeling remains unknown. A previous study performed on a non-cardiac model showed that CD44-HA enhances Na+/H+ exchanger isoform-1 (NHE1) activity, causing ECM remodeling, HA metabolism and tumor invasion. Interestingly, NHE1 has been demonstrated to be involved in cardiac remodeling and myocardial fibrosis. In addition, it has previously been demonstrated that CD44 is upregulated in transgenic mouse hearts expressing active NHE-1. The role of CD44, HA and NHE1 and the cellular interplay of these factors in the ECM and cardiac remodeling is the focus of this review.


Assuntos
Remodelamento Atrial , Insuficiência Cardíaca/fisiopatologia , Receptores de Hialuronatos/metabolismo , Ácido Hialurônico/metabolismo , Miócitos Cardíacos/fisiologia , Trocador 1 de Sódio-Hidrogênio/metabolismo , Remodelação Ventricular , Humanos , Miócitos Cardíacos/citologia , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...